

Lecture Notes
in Computational Science
and Engineering

Editors

Timothy J. Barth
Michael Griebel
David E. Keyes
Risto M. Nieminen
Dirk Roose
Tamar Schlick

Karl Heinz Hoffmann Arnd Meyer (Eds.)

Implementations, Algorithms and Applications

With 187 Figures and 18 Tables

Editors

Karl Heinz Hoffmann
Institute of Physics – Computational Physics
Chemnitz University of Technology
09107 Chemnitz, Germany
email: hoffmann@physik.tu-chemnitz.de

Arnd Meyer
Faculty of Mathematics – Numerical Analysis
Chemnitz University of Technology
09107 Chemnitz, Germany
email: a.meyer@mathematik.tu-chemnitz.de

Library of Congress Control Number: 2006926211

Mathematics Subject Classification: I17001, I21025, I23001, M13003, M1400X, M27004,
P19005, S14001

ISBN-10 3-540-33539-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-33539-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
c© Springer-Verlag Berlin Heidelberg 2006

Printed in The Netherlands

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: by the authors and techbooks using a Springer LATEX macro package
Cover design: design & production GmbH, Heidelberg

Printed on acid-free paper SPIN: 11739067 46/techbooks 5 4 3 2 1 0

Acknowledgement

The editors and authors of this book worked together in the SFB 393 “Par-
allele Numerische Simulation für Physik und Kontinuumsmechanik” over a
period of 10 years. They gratefully acknowledge the continued support from
the German Science Foundation (DFG) which provided the basis for the in-
tensive collaboration in this group as well as the funding of a large number of
young researchers.

Preface

High performance computing has changed the way in which science progresses.
During the last 20 years the increase in computing power, the development of
effective algorithms, and the application of these tools in the area of physics
and engineering has been decisive in the advancement of our technological
world. These abilities have allowed to treat problems with a complexity which
had been out of reach for analytical approaches. While the increase in perfor-
mance of single processes has been immense the increase of massive parallel
computing as well as the advent of cluster computers has opened up the possi-
bilities to study realistic systems. This book presents major advances in high
performance computing as well as major advances due to high performance
computing. The progress made during the last decade rests on the achieve-
ments in three distinct science areas.

Open and pressing problems in physics and mechanical engineering are the
driving force behind the development of new tools and new approaches in these
science areas. The treatment of complex physical systems with frustration
and disorder, the analysis of the elastic and non-elastic movement of solids
as well as the analysis of coupled fluid systems, pose problems which are
open to a numerical analysis only with state of the art computing power and
algorithms. The desire of scientific accuracy and quantitative precision leads
to an enormous demand in computing power. Asking the right questions in
these areas lead to new insights which have not been available due to other
means like experimental measurements.

The second area which is decisive for effective high performance computing
is a realm of effective algorithms. Using the right mathematical approach
to the solution of a science problem posed in the form of a mathematical
model is as crucial as asking the proper science question. For instance in the
area of fluid dynamics or mechanical engineering the appropriate approach by
finite element methods has led to new developments like adaptive methods or
wavelet techniques for boundary elements.

The third pillar on which high performance computing rests is computer
science. Having asked the proper physics question and having developed an

VIII Preface

appropriate effective mathematical algorithm for its solution it is the imple-
mentation of that algorithm in an effective parallel fashion on appropriate
hardware which then leads to the desired solutions. Effective parallel algo-
rithms are the central key to achieving the necessary numerical performance
which is needed to deal with the scientific questions asked. The adaptive load
balancing which makes optimal use of the available hardware as well as the
development of effective data transfer protocols and mechanisms have been
developed and optimized.

This book gives a collection of papers in which the results achieved in the
collaboration of colleagues from the three fields are presented. The collabora-
tion took place within the Sonderforschungsbereich SFB 393 at the Chemnitz
University of Technology. From the science problems to the mathematical al-
gorithms and on to the effective implementation of these algorithms on mas-
sively parallel and cluster computers we present state of the art technology.
We highlight the connections between the fields and different work packages
which let to the results presented in the science papers.

Our presentation starts with the Implementation section. We begin with
a view on the implementation characteristics of highly parallelized programs,
go on to specifics of FEM and quantum mechanical codes and then turn to
some general aspects of postprocessing, which is usually needed to analyse the
obtained data further.

The second section is devoted to Algorithms. The main focus is on FEM
algorithms, starting with a discussion on efficient preconditioners. Then the
focus is on a central aspect of FEM codes, the aspect ratio, and on prob-
lems and solutions to non-matching meshes at domain boundaries. The Algo-
rithm section ends with discussing adaptive FEM methods in the context of
elastoplastic deformations and a view on wavelet methods for boundary value
problems.

The Applications section starts with a focus on disordered systems, dis-
cussing phase transitions in classical as well as in quantum systems. We then
turn to the realm of atomic organization for amorphous carbons and for het-
erophase interphases in Titanium-Silicon systems. Methods used in classical
as well as in quantum mechanical systems are presented.We finish by a glance
on fluid dynamics applications presenting an analysis of Lyapunov instabilities
for Lenard-Jones fluids.

While the topics presented cover a wide range the common background is
the need for and the progress made in high performance parallel and cluster
computing.

Chemnitz Karl Heinz Hoffmann
March 2006 Arnd Meyer

Contents

Part I Implementions

Parallel Programming Models for Irregular Algorithms
Gudula Rünger . 3

Basic Approach to Parallel Finite Element Computations:
The DD Data Splitting
Arnd Meyer . 25

A Performance Analysis of ABINIT
on a Cluster System
Torsten Hoefler, Rebecca Janisch, Wolfgang Rehm . 37

Some Aspects of Parallel Postprocessing
for Numerical Simulation
Matthias Pester . 53

Part II Algorithms

Efficient Preconditioners for Special Situations
in Finite Element Computations
Arnd Meyer . 67

Nitsche Finite Element Method for Elliptic Problems
with Complicated Data
Bernd Heinrich, Kornelia Pönitz . 87

Hierarchical Adaptive FEM at Finite Elastoplastic
Deformations
Reiner Kreißig, Anke Bucher, Uwe-Jens Görke . 105

Wavelet Matrix Compression for Boundary Integral Equations
Helmut Harbrecht, Ulf Kähler, Reinhold Schneider 129

X Contents

Numerical Solution of Optimal Control Problems
for Parabolic Systems
Peter Benner, Sabine Görner, Jens Saak . 151

Part III Applications

Parallel Simulations of Phase Transitions
in Disordered Many-Particle Systems
Thomas Vojta . 173

Localization of Electronic States in Amorphous Materials:
Recursive Green’s Function Method and the Metal-Insulator
Transition at E �= 0
Alexander Croy, Rudolf A. Römer, Michael Schreiber 203

Optimizing Simulated Annealing Schedules
for Amorphous Carbons
Peter Blaudeck, Karl Heinz Hoffmann . 227

Amorphisation at Heterophase Interfaces
Sibylle Gemming, Andrey Enyashin, Michael Schreiber 235

Energy-Level and Wave-Function Statistics
in the Anderson Model of Localization
Bernhard Mehlig, Michael Schreiber . 255

Fine Structure of the Integrated Density
of States for Bernoulli–Anderson Models
Peter Karmann, Rudolf A. Römer, Michael Schreiber,
Peter Stollmann . 267

Modelling Aging Experiments in Spin Glasses
Karl Heinz Hoffmann, Andreas Fischer, Sven Schubert,
Thomas Streibert . 281

Random Walks on Fractals
Astrid Franz, Christian Schulzky, Do Hoang Ngoc Anh, Steffen Seeger,
Janett Balg, Karl Heinz Hoffmann . 303

Lyapunov Instabilities of Extended Systems
Hong-liu Yang, Günter Radons . 315

The Cumulant Method for Gas Dynamics
Steffen Seeger, Karl Heinz Hoffmann, Arnd Meyer 335

Index . 361

Part I

Implementions

Parallel Programming Models
for Irregular Algorithms

Gudula Rünger

Technische Universität Chemnitz, Fakultät für Informatik
09107 Chemnitz, Germany
ruenger@informatik.tu-chemnitz.de

Applications from science and engineering disciplines make extensive use of
computer simulations and the steady increase in size and detail leads to grow-
ing computational costs. Computational resources can be provided by modern
parallel hardware platforms which nowadays are usually cluster systems. Ef-
fective exploitation of cluster systems requires load balancing and locality of
reference in order to avoid extensive communication. But new sophisticated
modeling techniques lead to application algorithms with varying computa-
tional effort in space and time, which may be input dependent or may evolve
with the computation itself. Such applications are called irregular. Because of
the characteristics of irregular algorithms, efficient parallel implementations
are difficult to achieve since the distribution of work and data cannot be deter-
mined a priori. However, suitable parallel programming models and libraries
for structuring, scheduling, load balancing, coordination, and communication
can support the design of efficient and scalable parallel implementations.

1 Challenges for parallel irregular algorithms

Important issues for gaining efficient and scalable parallel programs are load
balancing and communication. On parallel platforms with distributed memory
and clusters, load balancing means spreading the calculations evenly across
processors while minimizing communication. For algorithms with regular com-
putational load known at compile time, load balancing can be achieved by
suitable data distributions or mappings of task to processors. For irregular al-
gorithms, static load balancing becomes more difficult because of dynamically
changing computation load and data load.

The appropriate load balancing technique for regular and irregular algo-
rithms depends on the specific algorithmic properties concerning the behavior
of data and task:

4 Gudula Rünger

• The algorithmic structure can be data oriented or task oriented. Accord-
ingly, load balancing affects the distribution of data or the distribution of
tasks.

• Input data of an algorithm can be regular or more irregular, like sparse
matrices. For regular and some irregular input data, a suitable data dis-
tribution can be selected statically before runtime.

• Regular as well as irregular data structures can be static or can be dynam-
ically growing and shrinking during runtime. Depending on the knowledge
before runtime, suitable data distributions and dynamic redistributions
are used to gain load balance.

• The computational effort of an algorithm can be static, input dependent
or dynamically varying. For a static or input dependent computational
load, the distribution of tasks can be planned in advance. For dynamically
varying problems a migration of tasks might be required to achieve load
balancing.

The communication behavior of a parallel program depends on the charac-
teristics of the algorithm and the parallel implementation strategy but is also
intertwined with the load balancing techniques. An important issue is the lo-
cality of data dependencies in an algorithm and the resulting communication
pattern due to the distribution of data.

• Locality of data dependencies: In the algorithm, data structures are cho-
sen according to the algorithmic needs. They may have local dependencies,
e.g. to neighboring cells in a mesh, or they may have global dependencies
to completely different parts of the same or other data structures. Both
local and global data dependencies can be static, input dependent or dy-
namically changing.

• Locality of data references: For the parallel implementation of an algo-
rithm, aggregate data structures, like arrays, meshes, trees or graphs, are
usually distributed according to a data distribution which maps different
parts of the data structure to different processors. Data dependencies be-
tween data on the same processor result in local data references. Data
dependencies between data mapped to different processors cause remote
data reference which requires communication. The same applies to task ori-
ented algorithms where a distribution of tasks leads to remote references
by the tasks to data in remote memory.

• Locality of communication pattern: Depending on the locality of data de-
pendencies and the data distribution, locality of communication pattern
occurs. Local data dependencies usually lead either to local data refer-
ences or to remote data references which can be realized by communication
with neighboring processors. This is often called locality of communication.
Global data dependencies usually result in more complicated remote access
and communication patterns.

Communication is also caused by load balancing when redistributing data
or migrating tasks to other processors. Also, the newly created distribution

Parallel Programming Models for Irregular Algorithms 5

of data or tasks create a new pattern of local and remote data references and
thus cause new communication patterns after a load balancing step. Although
the specific communication may change after redistribution, the locality of the
communication pattern is often similar.

The static planning of load balance during the coding phase is difficult
for irregular applications and there is a need for flexible, robust, and effec-
tive programming support. Parallel programming models and environments
address the question how to express irregular applications and how to execute
the application in parallel. It is also important to know what the best per-
formance can be and how it can be obtained. The requirement of scalability
is essential, i.e. the ability to perform efficiently the same code for larger ap-
plications on larger cluster systems. Another important aspect is the type of
communication. Specific communication needs, like asynchronous or varying
communication demands, have to be addressed by a programming environ-
ment and correctness as well as efficiency are crucial.

Due to diverse application characteristics not all irregular applications are
best treated by the same parallel programming support. In the following,
several programming models and environments are presented:

• Task pool programming for hierarchical algorithms,
• Data and communication management for adaptive algorithms,
• Library support for mixed task and data parallel algorithms,
• Communication optimization for structured algorithms.

The programming models range from task to data oriented modes for
expressing the algorithm and from self-organizing task pool approaches to
more data oriented flexible adaptive modes of execution.

2 Task pool programming for hierarchical algorithms

The programming model of task pools supports the parallel implementation
of task oriented algorithms and is suitable for hierarchical algorithms with
dynamically varying computational work and complex data dependencies.

The main concept is a decomposition of the computational work into tasks
and a task pool which stores the tasks ready for execution. Processes or threads
are responsible for the execution of tasks. They extract tasks from the task
pool for execution and create new tasks which are inserted into the task pool
for a later computation, possibly by another process or thread. Complex data
dependencies between tasks are allowed and may lead to complex interaction
between the tasks, forming a virtual task graph. Usually, task pools are pro-
vided as programming library for shared memory platforms. Library routines
for the creation, insertion, and extraction of tasks are available. A fixed num-
ber of processes or threads is created at program start to execute an arbitrary
number of tasks with arbitrary dependence structures.

6 Gudula Rünger

Load balancing and mapping of tasks is achieved automatically since a
process extracts a task whenever processor time is available. There are sev-
eral possibilities for the internal realization of task pools, which affect load
balancing. Often the tasks are kept in task queues, see also Fig. 1:

• Central task pools: All tasks of the algorithm are kept in one task queue
from which all threads extract tasks for execution and into which the
newly created tasks are inserted. Access conflicts are avoided by a lock
mechanism for shared memory programming.

• Decentralized task pools: Each thread has its own task queue from which
the thread extracts tasks and into which it inserts newly created tasks. No
access conflicts can occur and so there is no need for a lock mechanism. But
load imbalances can occur for irregularly growing computational work.

• Decentralized task pools with task stealing: This variant of the decentral-
ized task pool offers a task stealing mechanism. Threads with an empty
task queue can steal tasks from other queues. Load imbalance is avoided
but task stealing needs a locking mechanism for correct functionality.

P3P2P1P1 P3P2P1P1 P1P1 P3P2

Tasks Tasks

Decentralized
Task Pool

Central
Task Pool

Processors
Task-Stealing

Tasks

Fig. 1. Different types of task pool variants for shared memory

Due to the additional overhead of task pools it is suggested to use them
only when required for highly irregular and dynamic algorithms. Examples are
the hierarchical radiosity method from computer graphics and hierarchical n-
body algorithms.

The hierarchical radiosity method

The radiosity algorithm is an observer-independent global illumination method
from computer graphics to simulate diffuse light in three-dimensional scenes
[10]. The method is based on the energy radiation between surfaces of objects
and accounts for direct illumination and multiple reflections between surfaces
within the environment. The radiosity method decomposes the surface of ob-
jects in the scene into small elements Aj , j = 1, . . . , n, with almost constant
radiation energy. For each element, the radiation energy is represented by a
radiosity value Bj (of dimension [Watt/m2]) describing the radiant energy per
unit time and per unit area dAj of Aj . The radiosity values of the elements

