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Preface

This book originated from a set of lecture notes for a one-quarter graduate-
level course taught at the University of Washington. The purpose of the course
is to familiarize the students with the basic concepts of Bayesian theory and
to quickly get them performing their own data analyses using Bayesian com-
putational tools. The audience for this course includes non-statistics graduate
students who did well in their department’s graduate-level introductory statis-
tics courses and who also have an interest in statistics. Additionally, first- and
second-year statistics graduate students have found this course to be a useful
introduction to statistical modeling. Like the course, this book is intended to
be a self-contained and compact introduction to the main concepts of Bayesian
theory and practice. By the end of the text, readers should have the ability to
understand and implement the basic tools of Bayesian statistical methods for
their own data analysis purposes. The text is not intended as a comprehen-
sive handbook for advanced statistical researchers, although it is hoped that
this latter category of readers could use this book as a quick introduction to
Bayesian methods and as a preparation for more comprehensive and detailed
studies.

Computing

Monte Carlo summaries of posterior distributions play an important role in
the way data analyses are presented in this text. My experience has been
that once a student understands the basic idea of posterior sampling, their
data analyses quickly become more creative and meaningful, using relevant
posterior predictive distributions and interesting functions of parameters. The
open-source R statistical computing environment provides sufficient function-
ality to make Monte Carlo estimation very easy for a large number of statis-
tical models, and example R-code is provided throughout the text. Much of
the example code can be run “as is” in R, and essentially all of it can be run
after downloading the relevant datasets from the companion website for this
book.
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1

Introduction and examples

1.1 Introduction

We often use probabilities informally to express our information and beliefs
about unknown quantities. However, the use of probabilities to express infor-
mation can be made formal: In a precise mathematical sense, it can be shown
that probabilities can numerically represent a set of rational beliefs, that there
is a relationship between probability and information, and that Bayes’ rule
provides a rational method for updating beliefs in light of new information.
The process of inductive learning via Bayes’ rule is referred to as Bayesian
inference.

More generally, Bayesian methods are data analysis tools that are derived
from the principles of Bayesian inference. In addition to their formal interpre-
tation as a means of induction, Bayesian methods provide:

• parameter estimates with good statistical properties;
• parsimonious descriptions of observed data;
• predictions for missing data and forecasts of future data;
• a computational framework for model estimation, selection and validation.

Thus the uses of Bayesian methods go beyond the formal task of induction
for which the methods are derived. Throughout this book we will explore
the broad uses of Bayesian methods for a variety of inferential and statistical
tasks. We begin in this chapter with an introduction to the basic ingredients
of Bayesian learning, followed by some examples of the different ways in which
Bayesian methods are used in practice.

Bayesian learning

Statistical induction is the process of learning about the general characteristics
of a population from a subset of members of that population. Numerical values
of population characteristics are typically expressed in terms of a parameter θ,
and numerical descriptions of the subset make up a dataset y. Before a dataset

P.D. Hoff, A First Course in Bayesian Statistical Methods,
Springer Texts in Statistics, DOI 10.1007/978-0-387-92407-6 1,
c© Springer Science+Business Media, LLC 2009



2 1 Introduction and examples

is obtained, the numerical values of both the population characteristics and the
dataset are uncertain. After a dataset y is obtained, the information it contains
can be used to decrease our uncertainty about the population characteristics.
Quantifying this change in uncertainty is the purpose of Bayesian inference.

The sample space Y is the set of all possible datasets, from which a single
dataset y will result. The parameter space Θ is the set of possible parameter
values, from which we hope to identify the value that best represents the true
population characteristics. The idealized form of Bayesian learning begins with
a numerical formulation of joint beliefs about y and θ, expressed in terms of
probability distributions over Y and Θ.

1. For each numerical value θ ∈ Θ, our prior distribution p(θ) describes our
belief that θ represents the true population characteristics.

2. For each θ ∈ Θ and y ∈ Y, our sampling model p(y|θ) describes our belief
that y would be the outcome of our study if we knew θ to be true.

Once we obtain the data y, the last step is to update our beliefs about θ:

3. For each numerical value of θ ∈ Θ, our posterior distribution p(θ|y) de-
scribes our belief that θ is the true value, having observed dataset y.

The posterior distribution is obtained from the prior distribution and sampling
model via Bayes’ rule:

p(θ|y) =
p(y|θ)p(θ)∫

Θ
p(y|θ̃)p(θ̃) dθ̃

.

It is important to note that Bayes’ rule does not tell us what our beliefs should
be, it tells us how they should change after seeing new information.

1.2 Why Bayes?

Mathematical results of Cox (1946, 1961) and Savage (1954, 1972) prove that
if p(θ) and p(y|θ) represent a rational person’s beliefs, then Bayes’ rule is an
optimal method of updating this person’s beliefs about θ given new infor-
mation y. These results give a strong theoretical justification for the use of
Bayes’ rule as a method of quantitative learning. However, in practical data
analysis situations it can be hard to precisely mathematically formulate what
our prior beliefs are, and so p(θ) is often chosen in a somewhat ad hoc manner
or for reasons of computational convenience. What then is the justification of
Bayesian data analysis?

A famous quote about sampling models is that “all models are wrong,
but some are useful” (Box and Draper, 1987, pg. 424). Similarly, p(θ) might
be viewed as “wrong” if it does not accurately represent our prior beliefs.
However, this does not mean that p(θ|y) is not useful. If p(θ) approximates our
beliefs, then the fact that p(θ|y) is optimal under p(θ) means that it will also
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generally serve as a good approximation to what our posterior beliefs should
be. In other situations it may not be our beliefs that are of interest. Rather,
we may want to use Bayes’ rule to explore how the data would update the
beliefs of a variety of people with differing prior opinions. Of particular interest
might be the posterior beliefs of someone with weak prior information. This
has motivated the use of “diffuse” prior distributions, which assign probability
more or less evenly over large regions of the parameter space.

Finally, in many complicated statistical problems there are no obvious
non-Bayesian methods of estimation or inference. In these situations, Bayes’
rule can be used to generate estimation procedures, and the performance of
these procedures can be evaluated using non-Bayesian criteria. In many cases
it has been shown that Bayesian or approximately Bayesian procedures work
very well, even for non-Bayesian purposes.

The next two examples are intended to show how Bayesian inference, us-
ing prior distributions that may only roughly represent our or someone else’s
prior beliefs, can be broadly useful for statistical inference. Most of the math-
ematical details of the calculations are left for later chapters.

1.2.1 Estimating the probability of a rare event

Suppose we are interested in the prevalence of an infectious disease in a small
city. The higher the prevalence, the more public health precautions we would
recommend be put into place. A small random sample of 20 individuals from
the city will be checked for infection.

Parameter and sample spaces

Interest is in θ, the fraction of infected individuals in the city. Roughly speak-
ing, the parameter space includes all numbers between zero and one. The
data y records the total number of people in the sample who are infected.
The parameter and sample spaces are then as follows:

Θ = [0, 1] Y = {0, 1, . . . , 20} .

Sampling model

Before the sample is obtained the number of infected individuals in the sample
is unknown. We let the variable Y denote this to-be-determined value. If
the value of θ were known, a reasonable sampling model for Y would be a
binomial(20, θ) probability distribution:

Y |θ ∼ binomial(20, θ) .

The first panel of Figure 1.1 plots the binomial(20, θ) distribution for θ equal
to 0.05, 0.10 and 0.20. If, for example, the true infection rate is 0.05, then the
probability that there will be zero infected individuals in the sample (Y = 0)
is 36%. If the true rate is 0.10 or 0.20, then the probabilities that Y = 0 are
12% and 1%, respectively.
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Fig. 1.1. Sampling model, prior and posterior distributions for the infection rate
example. The plot on the left-hand side gives binomial(20, θ) distributions for three
values of θ. The right-hand side gives prior (gray) and posterior (black) densities of
θ.

Prior distribution

Other studies from various parts of the country indicate that the infection rate
in comparable cities ranges from about 0.05 to 0.20, with an average prevalence
of 0.10. This prior information suggests that we use a prior distribution p(θ)
that assigns a substantial amount of probability to the interval (0.05, 0.20),
and that the expected value of θ under p(θ) is close to 0.10. However, there are
infinitely many probability distributions that satisfy these conditions, and it
is not clear that we can discriminate among them with our limited amount of
prior information. We will therefore use a prior distribution p(θ) that has the
characteristics described above, but whose particular mathematical form is
chosen for reasons of computational convenience. Specifically, we will encode
the prior information using a member of the family of beta distributions. A
beta distribution has two parameters which we denote as a and b. If θ has a
beta(a, b) distribution, then the expectation of θ is a/(a + b) and the most
probable value of θ is (a − 1)/(a − 1 + b − 1). For our problem where θ is
the infection rate, we will represent our prior information about θ with a
beta(2,20) probability distribution. Symbolically, we write

θ ∼ beta(2, 20).

This distribution is shown in the gray line in the second panel of Figure 1.1.
The expected value of θ for this prior distribution is 0.09. The curve of the
prior distribution is highest at θ = 0.05 and about two-thirds of the area
under the curve occurs between 0.05 and 0.20. The prior probability that the
infection rate is below 0.10 is 64%.
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E[θ] = 0.09
mode[θ] = 0.05

Pr(θ < 0.10) = 0.64
Pr(0.05 < θ < 0.20) = 0.66 .

Posterior distribution

As we will see in Chapter 3, if Y |θ ∼ binomial(n, θ) and θ ∼ beta(a, b),
then if we observe a numeric value y of Y , the posterior distribution is a
beta(a+y, b+n−y) distribution. Suppose that for our study a value of Y = 0
is observed, i.e. none of the sample individuals are infected. The posterior
distribution of θ is then a beta(2, 40) distribution.

θ|{Y = 0} ∼ beta(2, 40)

The density of this distribution is given by the black line in the second panel
of Figure 1.1. This density is further to the left than the prior distribution,
and more peaked as well. It is to the left of p(θ) because the observation
that Y = 0 provides evidence of a low value of θ. It is more peaked than p(θ)
because it combines information from the data and the prior distribution, and
thus contains more information than in p(θ) alone. The peak of this curve is
at 0.025 and the posterior expectation of θ is 0.048. The posterior probability
that θ < 0.10 is 93%.

E[θ|Y = 0] = 0.048
mode[θ|Y = 0] = 0.025

Pr(θ < 0.10|Y = 0) = 0.93.

The posterior distribution p(θ|Y = 0) provides us with a model for learning
about the city-wide infection rate θ. From a theoretical perspective, a ratio-
nal individual whose prior beliefs about θ were represented by a beta(2,20)
distribution now has beliefs that are represented by a beta(2,40) distribution.
As a practical matter, if we accept the beta(2,20) distribution as a reasonable
measure of prior information, then we accept the beta(2,40) distribution as a
reasonable measure of posterior information.

Sensitivity analysis

Suppose we are to discuss the results of the survey with a group of city health
officials. A discussion of the implications of our study among a diverse group of
people might benefit from a description of the posterior beliefs corresponding
to a variety of prior distributions. Suppose we were to consider beliefs rep-
resented by beta(a, b) distributions for values of (a, b) other than (2,20). As
mentioned above, if θ ∼ beta(a, b), then given Y = y the posterior distribution
of θ is beta(a+ y, b+ n− y). The posterior expectation is
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E[θ|Y = y] =
a+ y

a+ b+ n

=
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where θ0 = a/(a + b) is the prior expectation of θ and w = a + b. From
this formula we see that the posterior expectation is a weighted average of
the sample mean ȳ and the prior expectation θ0. In terms of estimating θ,
θ0 represents our prior guess at the true value of θ and w represents our
confidence in this guess, expressed on the same scale as the sample size. If
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Fig. 1.2. Posterior quantities under different beta prior distributions. The left- and
right-hand panels give contours of E[θ|Y = 0] and Pr(θ < 0.10|Y = 0), respectively,
for a range of prior expectations and levels of confidence.

someone provides us with a prior guess θ0 and a degree of confidence w, then
we can approximate their prior beliefs about θ with a beta distribution having
parameters a = wθ0 and b = w(1−θ0). Their approximate posterior beliefs are
then represented with a beta(wθ0 + y, w(1− θ0)+n− y) distribution. We can
compute such a posterior distribution for a wide range of θ0 and w values to
perform a sensitivity analysis, an exploration of how posterior information is
affected by differences in prior opinion. Figure 1.2 explores the effects of θ0 and
w on the posterior distribution via contour plots of two posterior quantities.
The first plot gives contours of the posterior expectation E[θ|Y = 0], and
the second gives the posterior probabilities Pr(θ < 0.10|Y = 0). This latter
plot may be of use if, for instance, the city officials would like to recommend
a vaccine to the general public unless they were reasonably sure that the
current infection rate was less than 0.10. The plot indicates, for example, that


